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Abstract. We link the large-scale dynamics of non-reversible Monte Carlo
algorithms as well as a lifted TASEP to an exactly soluble model of self-repelling
motion. We present arguments for the connection between the problems and
perform simulations, where we show that the empirical distribution functions
generated from Monte Carlo are well described by the analytic solution of self-
repelling motion.

Introduction

Non-reversible Monte Carlo sampling as developed for hard disks [1], and its
generalisation to arbitrary potentials [2, 3, 4] has many wonderful properties which
facilitate the equilibration of large complex systems faster than conventional Monte
Carlo, or molecular dynamics algorithms [5, 6]. However, analytic understanding
of the large-scale, effective dynamics is lacking. This is in strong contrast to, for
instance, molecular dynamics which generate the Navier-Stokes equations at large
scales in a fluid. Extensive theoretical analysis of the mode structure of these
hydrodynamic equations gives us the slow hydrodynamic modes of sound, vorticity
and heat propagation, which limit the large-scale sampling of a fluid.

What are the equivalent statements for event-chain Monte Carlo? What are
the slow, hydrodynamic modes? This letter aims to present the continuum, coarse-
grained equations describing event-chain simulation and demonstrate their equivalence
to an exactly soluble model of a growing polymer. Clearly, if one understands
the temporal evolution of the coarse-grained equations, it will be possible to make
exact statements on the evolution of densities and correlations, and perhaps find
better implementations in the future. The present letter makes a direct link between
event-chain Monte Carlo simulation and “true” self-repelling motion, [7] which has
been much studied using a variety of physical methods including scaling [8, 9] and
renormalisation [10]. Recently this model has been studied using advanced methods
based on interacting Brownian paths, which have led to exact, analytic results for the
dynamical properties [11, 12, 13].

In this letter, we introduce the self-avoiding model, together with the exact results
for its time evolution. We then summarise the behaviour of a class of non-reversible
algorithms before arguing that there is a link between these two dynamical systems.
Finally, we present numerical evidence as to the identity of distribution functions with
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data coming from event-chain simulation of harmonic chains, as well as simulation of
a lifted TASEP (Totally Asymmetric Simple Exclusion Process).

True self-avoiding motion

The “true” self-avoiding walk was introduced, [7] as a dynamic model of polymer
growth, in contrast to an equilibrated statistical ensemble of equilibrated polymers.
On a lattice, monomers are added successively to a chain, trying to avoid places where
the polymer has already passed. The probability of choosing a site i, which has been
visited Li(t) times is then

pi(t+ 1) =
e−λLi(t)∑
j e

−λLj(t)
(1)

Where the sum is over all neighbours j of the current position at time t. The model has
infinite memory, required to calculate the placement probabilities of the new monomer.

It was argued, [7] that this dynamic process has a continuum limit so that the
effective, large-scale behaviour is of the form

dX(t)

dt
= −∇L(t,X(t)) + ξ(t) (2)

dL(t,x)

dt
= δ(x−X(t)) (3)

The function, L(t,x), a local time, cumulates memory as to the occupation of the
position X(t). The growth of the end of the growing polymer is then repelled by
regions where L(t,x) has become large, in a manner which is analogous to the original
lattice model. This continuum model is then amenable to many of the formal methods
of field theory [14, 10].

Distributions functions of the model

Remarkably, the equations (2, 3) in one dimension lead to an explicitly solvable
model [12, 13] involving time scaling in t2/3 or t1/3 for distribution functions; the
Langevin-like eq. (2), does not lead to Brownian scaling in t1/2. The exact solutions
displayed in [13] show that two important distributions of physical variables exhibit
scaling forms:

ρ1(t, x) = t−2/3ν1(xt
−2/3) (4)

ρ2(t, h) = t−1/3ν2(ht
−1/3) (5)

ρ1(t, x) is the distribution of displacement of the process after time t; in the original
polymer problem of [7] it is the distribution of end-to-end separations. ρ2(t, h) is the
distribution of h(t) = L(t,X(t)), the number of previous visits to the endpoint of the
polymer. The scaling functions are

ν1(x) =

∞∑
k=1

pk
2
δ′kf2/3(δ

′
k|x|) (6)

ν2(h) =
2 · 61/3

√
π

Γ(1/3)
2 e−(8h3)/9U(1/6, 2/3, (8h3)/9) (7)

f2/3(x) is the Mittag-Leffler function. δ′k and pk are calculated from the k’th zero of
the derivative of an Airy function [13], U is a confluent hypergeometric function of
the second kind [15].
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Scaling argument for motion

A scaling argument [9], allows one to find the exponents describing the solutions. Let
motion occur on the length scale tα in time t. Then L must be of the form

L(t, x) ∼ t(1−α)g(x/tα) (8)

The driving force from eq. (2), −∇L(t, x), then scales as t(1−2α)g′(x/tα). If this force
acts over the time t, it generates motion ∼ t(2−2α). It is natural that this motion is
comparable to the total extent of the motion, tα, so t(2−2α) = tα, and α = 2/3.

Event-Chain Monte Carlo

Non-reversible, event-chain Monte Carlo methods are lifted variants of reversible
Monte Carlo, where a single “active” particle is mobile, and at (to be determined)
event times transfers motion to another particle, thereby avoiding the rejection step
of reversible Monte Carlo methods [16]. We here consider event-chain algorithms
suitable for simulation of models with continuous potentials [2, 4].

The total energy function is broken into a sum of “factor potentials”. Each of
these factors is then able to veto the motion of the active particle when a stochastic
criterion, is violated. At the moment of veto, motion then transfers to another member
of the factor which emitted the veto. In the case of the sampling of a chain, each
particle is in direct interaction with its two neighbours, the factor potentials are then
just the contribution of each bond to the total energy; on a veto event the activity
jumps to one of the two neighbours.

Particularly exciting results for event-chain simulation were found for low-
dimensional XY spins [17] where it was argued that in one dimension the dynamics are
characterized by a dynamic exponent, z = 1/2. This exponent links the relaxation time
τ (in sweeps) of a system N spins via τ ∼ Nz. This result is smaller (hence, better)
than is found in conventional reversible Monte Carlo or molecular dynamics where
one finds z = 2 or z = 1. This exceptional scaling was generalized to more general
models, including hard spheres and Lennard-Jones chains where a detailed study of
the dynamics was performed [18]. As noted in [18], a dynamic exponent of z = 1/2,
requires that the motion is indeed characterised by hyperdiffusion, x ∼ t2/3. Rather
remarkably, independent of the underlying physical system the large-scale dynamic
processes obey identical hyper-diffusive dynamics. We also note that scaling of the
form eq. (5) was found for the local time (see in particular [18] Fig. 9).

Very similar phenomenology has recently been demonstrated in a lattice model,
a lifted version of the widely studied simple exclusion process [19, 20]. This variant
of TASEP was designed to mimic certain aspects of non-reversible Monte Carlo. Here
too, strong numerical evidence, constructed via the Bethe ansatz, points to a non-
trivial scaling of solutions involving t2/3. We conclude that this unusual scaling in
time is observed in a wide variety of physical models (with very different underlying
interactions) undergoing non-reversible dynamics subject to balance, without detailed
balance.

Argument for algorithmic optimality

We note that motion x ∼ t2/3 is optimal for sampling via of a single tracer particle (we
do not consider algorithms involving global updates) leading to complete resampling
of the modes of a one-dimensional system: Consider a section of l elements within
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a system of particles. Peierls argument, [21], tells us that the fluctuations in this
section increase as |∆l| ∼ l1/2. After the algorithm that has been run for t steps to
sample the system, activity has progressed |x| ∼ tα. Thus, length fluctuations, if the
section is fully re-equilibrated, are |∆l| ∼ tα/2. From eq. (8) we see that the number
of visits to the starting point of the simulation is L(t, 0) ∼ t1−α. If we identify the
two expressions for the displacement then t1−α ∼ |∆l| ∼ tα/2, or α = 2/3. Thus the
amplitude of fluctuations, needed to re-equilibrate the section, is comparable to the
number of returns of the algorithm to the origin, and thus the maximum displacement
that can be generated for the origin in the time t.

Self-repelling motion and non-reversible simulation

We now simulate with an event-chain Monte Carlo an elastic chain at temperature,
T = 1, with harmonic springs of unit strength, starting with a zero-temperature
configuration. For concreteness, the active particle moves in the +x direction. The
algorithm proposes, at each time step, a displacement of the active particle which
is vetoed after motion by a distance O(1). Consider now a section of the chain, of
l + 1 sites of the system [0, l], which has been uniformly stretched, after running the
algorithm for some time. For this to have occurred, there must have been more visits
to the site labelled l than to the site 0, for instance for l=4 the zig-zag trajectory
(01234)(32)(1234)(3)(234)(34) generates a stretched chain with number of visits for
each site, Li = [1, 2, 4, 6, . . .]. This stretching then influences the future motion of the
active particle. Such a stretch leads to a higher veto rate for transfers of the activity
to the left of the chain, opposite to the gradient in Li. However, this is exactly the
phenomenology of eq. (2). If the exact details of the local update rule are not crucial in
the dynamics and some form of large-scale universality applies eqs. (2, 3) are clearly
candidates for a coarse-grained description of the motion generated by event-chain
Monte Carlo. In event-chain simulation in higher dimension, we understand that
relative motion of particles leads to a heterogeneous buildup in stress which will then
back-react on the motion of the active particle, leading to a very similar coupling of
motion and history.

Numerical results

Elastic chain

We generate data for the simulation of an elastic chain of N particles linked by
harmonic springs. We initialise the chain to its ground state. We then perform
m = 134×106 simulations starting at the origin, (i = 0) corresponding to x = 0 in the
figures. Our simulated systems are periodic, but all simulations are too short in time
to be influenced by the choice of a finite N , or to see wrap-around of trajectories. As
is usual in event driven Monte Carlo we simulate for an imposed chain length which
we take here as t = 106. The mean-free path is slightly greater than unity, so this
corresponds to very nearly 106 transfers of activity.

During each simulation, we cumulate the number of visits to each site by the
active particle, Li(t). At the end of each of the m simulations we save the index
of the final active particle (which in the continuum limit corresponds to x), as well
as the number of visits of the active particle to the final chain position h. After the
simulation, the data is binned generating empirical distributions, that we compare with
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Figure 1. Scaling function for distribution, ν1(x), eq. (6) curve in red, compared
to simulation data where we have saved the index of the final point of a trajectory,
blue histogram. The distribution is a function of only |x|, and is singular at x = 0.
The empirical distribution has a standard deviation of ∼ 16, 500 sites.
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Figure 2. Scaling function for the number of site visits at the end-point of
motion, ν2(h) eq. (7) curve in red, compared to simulation data, blue histogram.
Same simulation as Fig. 1

eqs. (6, 7). These curves represent probability distributions and are thus automatically
normalized to unit area. The only free variable in comparing the analytic expressions
to the binned numerical data is thus the choice of the horizontal scale. We fix this one
undetermined scale by imposing that the first moment of the empirical curve matches
the theoretical expression.

We plot the results of our analysis Fig. 1, for the displacement distribution
function ρ1, and for the local time distribution ρ2, Fig. 2. The solid (red) lines are
the analytic expressions. We find excellent agreement between theory and numerics.
We note, in particular, that as predicted by theory the distribution of Fig. 1 has
a singularity at the origin. The empirical curve for ρ2 at h = 0 is systematically



Non-reversible Monte Carlo: an example of “true” self-repelling motion 6

lower than the red, theoretical curve, this corresponds to simulations that finish on an
unvisited site. This curve, thus converges weakly to the theory, with the bar at h = 0
squeezed to zero width at the origin as t increases. We also performed simulations
starting from a pre-equilibrated physical system. In this case, we find very similar
distributions to those plotted in Figs. 1, 2 with however, a change of scale in the axes,
see also [13].

Lifted TASEP

Finally, we perform a numerical study of the lifted TASEP model [20]. We consider
a system of N particles on a periodic lattice of length 2N . We initialise the system
in a crystal of equally spaced particles. Simulations on short times give rise to an
asymmetric distribution from for ρ1(x) (Fig. 3, top), but longer simulations give a
very slow convergence to a more symmetric form (Fig. 3, bottom). We conclude that
the lifted TASEP displays very similar phenomenology to the harmonic chain, and
is also in the same dynamic universality class as true self-avoiding motion. We also
confirmed, for lifted TASEP, the expected scaling of displacement of the activity in
t2/3, Fig. 4 (top). Fig. 4, (bottom) shows that distribution of displacement is strongly
skewed for short times; it is only after a long simulation that the back-forwards
symmetry is established When we start with a configuration which is generated
randomly, the initial asymmetry is weaker, though not zero.

Conclusions

To conclude, we have presented an argument that the evolution of a system subject
to non-reversible Monte Carlo is directly linked to the continuum limit of a growth
model [7]. We performed extensive simulations using an event chain algorithm and
compared the resulting distributions to those calculated in [12, 13, 22]. We find
excellent agreement, for both a harmonic chain, and for the non-harmonic lifted
TASEP, and so conclude that the non-reversible algorithm is indeed a realisation
of a true self-repelling motion.

Event-chain methods, including factor fields, have been generalized to higher
dimensions [23]. It would be of interest to transfer the formalism of the present letter
to such systems, perhaps using the approach of [24]. Applications in Monte Carlo
simulation also require generalisations of the continuum equations to include extra,
drift, terms due to coupling to external stresses [2].

The code used to simulate the two physical systems, as well as the analysis code
is available from the author.
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Figure 4. Evolution of moments of ρ1(t, x) for lifted TASEP. Top: standard
deviation of the distribution, compared to evolution in t2/3. Bottom, skewness
(normalized third moment) compared to t−1/3. The decrease in skewness
corresponds to a distribution which progressively becomes more symmetric.
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[11] Tóth B and Werner W 1998 Probability Theory and Related Fields 111 375–452 URL https:

//doi.org/10.1007/s004400050172
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