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This Letter is concerned with effective interatomic potentials in metals specifically arising from elec-
tronic quantum fluctuations. The cohesive energy is shown to contain large terms arising from general-
ized dispersion forces. Further, the density-density response function of the homogeneous electron gas is
shown to contain a part decaying monotonically as 1/ in real space; this has consequences in the con-
struction of generalized functional theories of interatomic potentials.

PACS numbers: 71.10.+x, 61.45.+s, 71.45.Gm

The theory of interatomic potentials and cohesion in
noble metals is normally treated in a self-consistent band
picture, either numerically or by use of a tractable ana-
lytic approximation.'= But it is also possible to take an
entirely different viewpoint in treating the d electrons,
namely to regard them as localized atomic orbitals in the
spirit of the tight-binding approximation, while continu-
ing to treat the s-p electrons with nearly-free-electron
theory. The basic philosophy of the method is to incor-
porate the many-body nature of the interaction of the
core states from the very beginning, rather than using
correlation and exchange corrections to the single-
particle band energy as is usual in most approaches. In
this picture, our conclusion will be that many of the
cohesive properties of noble metals are directly linked to
fluctuation effects analogous to those important in the
binding of insulating molecular crystals. Band-structure
calculations are based on the construction of a static
mean field; in contrast, we are able to isolate effects that
are directly attributable to dynamical correlations.

As its first major point, this Letter proposes a new
method of looking at the origin of metallic potentials in
metals whose ions are highly polarizable. The calcula-
tions presented are based on diagrammatic perturbation
theory of the electron gas; the terms that will be dis-
cussed are shown in sequence in Fig. (1). Some of these
are familiar in the context of standard linear-response
theory. However, perhaps the key point we wish to make
is that many other of the effects treated here involve the
nonlinear response of the homogeneous electron gas.
This is because the dynamical effects we consider first
appear at this order in perturbation theory. We shall
therefore conclude that it is insufficient to use linear
response in metals in which core polarization is impor-
tant.

The second major point of this Letter is that we have
identified large contributions to the potentials whose ori-
gin is in certain diagrams for the free, interacting elec-
tron gas which have been overlooked in the consideration
of the linear response of homogeneous systems. These
terms have implications for the functional methods used
in numerical calculations, and they lead to the possibility

of recovering van der Waals forces in nonlocal functional
theories of the electron gas.

To set the context of the treatment that follows recall
that cohesion in a molecular crystal, such as argon, is
dominated by dispersion forces that are dynamical in ori-
gin. The ions of a metal with polarizable cores can be
described in a very similar manner. Even in noble met-
als, in spite of the hybridization between bands, the opti-
cal properties are reasonably well described by first
separating the electrons into polarizable core states em-
bedded in a quasifree-electron gas.*"® The modification
of the optical properties resulting from the interaction
between the two sets of electrons has an exact parallel in
the theory of cohesion. Thus in silver the plasmon has
an energy considerably below the free-electron predic-
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FIG. 1. (a) The usual screened Coulomb interaction be-
tween ions. (b) A term contributing to a dynamically screened
van der Waals interaction. (c) The coupled dipole-plasmon
mode. (d) The dipole-plasmon mode coupled to a local inho-
mogeneity. (e) Change in the van der Waals energy arising
from inhomogeneity. (f) Fluctuation-derived interaction be-
tween two pseudoatoms. (g) A new electrostatic mechanism
for the interaction of pseudoatoms.
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tion, showing that there is a lowering of the collective zero-point energy of the electron system, given by Eq. (4). With
these general observations as a guide, we may take as a model for the noble metals a system of core (i.e., d) electrons
which are treated in a dipole approximation and an initially homogeneous interacting electron gas to model the valence
(s-p) electrons. The corresponding Hamiltonian is then

H=x 3o pi +2fV,(r)n (1)d r+ffn ()L rdr
+):ff[d,(r) VgL eEd rd3r'+sz[d,(r) VAW G)V, d—dratr, ()
I=k

where V; is the ionic pseudopotential and d; the dipole operator for the /th core; 7, is the valence-charge-density opera-
tor. To study the properties of the Hamiltonian (1) we use standard time-ordered perturbation theory in the Goldstone
formulation.”® The results are most conveniently summarized in diagrams with use of the conventional rules. We shall
give all results in atomic units. The simplest diagram leading to a contribution to the effective potentials is Fig. 1(a)?;
it is the well-known screened Coulomb interaction between pseudoatoms by which we mean the ion together with the
surrounding, induced free-electron cloud. Figure 1(b), on the other hand, corresponds to van der Waals interactions

between the core electrons which are here screened by the intervening electron gas. The contribution to the energy of a

pair of atoms separated by r is
_d’q_
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Note that the core density-density response function for
diagram 1(b) is given by

alw)q-q’, (3)

where a(w) is the frequency-dependent core polarizabili-
ty. In (2), e(q,w) is the dielectric function for the ho-
mogeneous electron gas. With a(w) extracted from op-
tical measurements, Eq. (2) is easily evaluated and con-
tributes typically 40 meV to the interaction energy of a
nearest-neighbor pair in a noble metal.

The contribution summarized by (2) has been con-
sidered by a number of authors.”® It is large because
the internal Coulomb lines in the loop of Fig. 1(b) are
integrated over frequency; thus we are led to consider the
screening of dynamical effects in an electron gas. Most
importantly, at finite frequencies, the perfect screening
sum rule lim, . oe ~'(q,0) =0 no longer holds. In fact,
to a good approximation the internal lines can be re-
placed with the simplified expression 47w?/q*(0*+ 0}),
with @, the plasma frequency of the electron gas. The
simplest model is then to assume that the core fluctua-
tions are dominated by a single excited state with energy
A, for which a(w)=a(0)A%/(A*—w?). The integrals
over w are then straightforward, and we find an approxi-
mate formula for the screened van der Waals interac-
tions in a polarizable metal,

3A a (0)
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The usual van der Waals result for an insulator follows
on substitution of w, =0. The approximation of a single
characteristic excitation of energy A is certainly not ade-
quate for a noble metal since excitations to a continuum
in the range 5-50 eV are important, but the result
demonstrates an essential qualitative point, namely that
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dispersion forces keep their usual asymptotic form even
in the presence of dynamic screening by an electron gas.

Fluctuation or zero-point contributions give a large
contribution to the total cohesive energy of a noble met-
al. In the language appropriate to metallic systems, this
is a one-body potential; it can be regarded as a coupling
of the zero-point motions of the dipole oscillators with
the plasma oscillations of the free-electron gas. In the
same way that the instantaneous polarization field of a
dipole can polarize a second dipole, thereby lowering the
total energy of the atoms, so also it is possible for a dipo-
lar fluctuation to polarize the surrounding electron gas
and lower the joint energy. Diagrammatically this is
shown in Fig. 1(c); analytically we find that the mecha-
nism contributes

. . 4
EC=47IJ; f 2n )3Z(q,tw)a(zw)q—’; (4)

to the energy. Here X is the density-density response
function of the homogeneous electron gas. Numerical
calculations show that typically 3 eV of the total
cohesive energy of a noble metal is contributed by this
mechanism, though the exact answer obtained is strongly
dependent on the large-g behavior of the electron re-
sponse function, and any assumed form factor for the
coupling of the free-electron gas and dipoles. This ener-
gy is correlation energy and in the band approach is in-
cluded in the construction of the self-consistent one-
particle potential. The picture, just described, of coupled
dipole-plasmon modes gives a simple intuitive explana-
tion of this effect.

We now consider Fig. 1(d) which expresses the cou-
pling of the dipolar fluctuations of the core electrons to
the local change in the plasmon properties associated
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with an inhomogeneity. The process involves the nonlinear, frequency-dependent response of the electron gas. Note
that we have neglected variations of the atomic polarizability with density, which should be of less importance than the

change in properties of the free-electron gas, but variations in a(w) can be included in principle. Figure 1(d) is then
given analytically by

2n)3

where ') is the three-point function of the electron gas —
and Visn(q) the Fourier transform of the ionic pseudopo- limit of small g and ¢’ with w finite A® contains a term

4r 4 N r
Ed(r)=J; f____g_ (2 )3q q'alio) T P(qimq’, —ie;—q—q,0) = q” Vienlg+q')ei@ta)r (5)

tential. We can write T'® in terms of the irreducible proportional to q-q'/w? which should be compared
three-point function, A®). The convention that we used directly with the core density-density response function,
for A® is such that Eq. (3). In many ways the screening electrons induced
A(”(q,a);—q, — ©;0,0) =dx°(q,w)/dy, in the vicinity of the. ion core behav'e ?xactl)z li.ke the
bound charges but with the characteristic excitation en-
where u is the chemical potential. For the present illus- ergy, A, set equal to zero. The other role of A® s to
trative purposes, AP s adequately given by its random- change the properties of the collective modes such as the
phase-approximation value, and is written down with plasmon in regions of inhomogeneity. Both functions are
well-known diagrammatic methods. We see that the displayed in Fig. 1(e) which contains contributions to
internal Coulomb lines of the diagram are again incom- both the two- and three-body potentials; in a region of
pletely screened so that the asymptotic behavior of this changed local density and lower symmetry the different
contribution to the pair potential is 1/r, the familiar van scalings of the pair and three-center potentials with sepa-
der Waals form. Numerically we find that this term ration, and the angular dependence of the three-center
contributes 20 meV to the pair potential of a noble metal potentials, mean that we expect this diagram to be quali-
at nearest-neighbor spacings. tatively important for the structure of defects and grain
The dynamic three-point function of the electron gas boundaries. Because of the behavior of A3, the three-
has an important dual role: First, in Eq. (5) it is directly center interactions asymptotically have the Axilrod-
related to the polarizability of the screening cloud in- Teller form.
duced by the ionic charge, that is, it contains the pseu- We can go further and also consider the interaction of
doatom polarization operator. This arises because in the the fluctuations of two pseudoatoms. This is the content

| of Fig. 1(). Analytically it gives

4 4n ir:
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We note that this term is also present in the exact |

density-density correlation function of the homogeneous pletely screened interactions. This is why the term is

electron gas and so is in principle included in Fig. 1(a); large even though the diagram is formally of high order.

most theories of the response of the homogeneous elec- Finally we consider the possible implications of this
tron gas do not consider such a term and so we have ex- viewpoint for fully numerical studies of interatomic po-
plicitly excerpted it for further consideration. If we ex- tentials. Higher-order corrections to the polarization of
tract the long-range part of the figure by using an the homogeneous electron gas, such as are implied by
asymptotic expansion in real space, we find a contribu- Eq. (6), are often expressed in terms of the local-field
tion to the effective pair potential of correction which contains information on terms beyond

the usual random-phase-approximation response func-

—1.2 3.6 [ .
Ef(r) 3z°/16wpr tion. From the considerations above, it can be shown

with z the number of valence electrons per atom. It has that part of the local-field corrections have a monotone
been pointed out'® that the large-|q’| part of this ex- power-law decay in real space, and this has a direct bear-
pression is divergent and must be taken with other relat- ing on in functional theories of the inhomogeneous elec-
ed but short-range diagrams to obtain the full real-space tron gas based on the response functions of homogeneous
behavior. Another interpretation of this diagram is that systems and in addition for effective electron-electron in-
it is the sum of the correlation ring diagrams of a free, teractions.!' In a nonlocal, weighted-density approach it
inhomogeneous electron gas with the wave functions should be possible to recover at least part of the full van
corrected to second order in the external potential. We der Waals interaction normally attributed to closed-shell
again note that the diagram contains the important atoms; the local-field correction is directly related to the
feature of an internal dynamic loop and hence incom- weighting function used in such theories.'? In systems
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with open shells, such as transition metals, we would ex-
pect these nonlocal terms to give a large contribution to
the interatomic potentials.

As a final mechanism for consideration in polarizable
metals we consider Fig. 1(g), which has the following
physical interpretation: The coupling between the core
electrons and the valence electrons is strongly attractive,
and valence electrons are drawn in around the ion. The
charge excesses now based at each ion then interact via
the usual static, screened Coulomb interaction. Through
this figure we again see the tendency of the dipole-
electron-gas coupling to increase the density of the sys-
tem.

To summarize, we have shown that instead of the usu-
al static response mechanisms found to be important in
theories of potentials in simple metals, it is possible to
view the potentials in noble metals as dominated by gen-
eralized dispersion forces which are dynamic in origin.
To account fully for the coupling of the electrostatics
and the dynamics of the system it is natural to introduce
the dynamic nonlinear response functions of the electron
gas. These comments apply equally to any simple metal
which has a highly polarizable core, but whose core elec-
trons may be well separated from the s-p band.
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